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We introduce a coupled method for hydrodynamic and kinetic equations on 2-dimensional
h-adaptive meshes. We adopt the Euler equations with a fast kinetic solver in the region
near thermodynamical equilibrium, while use the Boltzmann-BGK equation in kinetic
regions where fluids are far from equilibrium. A buffer zone is created around the kinetic
regions, on which a gradually varying numerical flux is adopted. Based on the property of a
continuously discretized cut-off function which describes how the flux varies, the coupling
will be conservative. In order for the conservative 2-dimensional specularly reflective
boundary condition to be implemented conveniently, the discrete Maxwellian is approxi-
mated by a high order continuous formula with improved accuracy on a disc instead of on a
square domain. The h-adaptive method can work smoothly with a time-split numerical
scheme. Through h-adaptation, the cell number is greatly reduced. This method is partic-
ularly suitable for problems with hydrodynamics breakdown on only a small part of the
whole domain, so that the total efficiency of the algorithm can be greatly improved. Three
numerical examples are presented to validate the proposed method and demonstrate its
efficiency.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we study a coupled method for the kinetic and hydrodynamic equations on an h-adaptive mesh in 2-dimen-
sional case. In situations where the hydrodynamic equations do not provide a satisfactory description of the physical system
of concern so as to require a kinetic description, we have to adopt the Boltzmann equation, or a simplified version of it, i.e.
the Boltzmann-BGK equation. From a computational perspective, it is much more expensive to solve such models with a
microscopic quantity resolution. In practice, many problems can be described by the continuum models on most part of
the domain where the hydrodynamics breakdown only happened very locally, such as shock layers or an extremely rarefied
part, where a coupled method of the continuum/kinetic models can be efficient without loss of physical correctness. There
have been many investigations in this direction in the last few years; these include the coupling of different models and dif-
ferent implementation techniques. This paper is a further study of the method introduced in [4] on 2-dimensional h-adaptive
meshes. As pointed out in [4,1], the Direct Simulation Monte-Carlo (DSMC) method for the Boltzmann equation is intrinsi-
cally unsteady and of low efficiency for fluids close to the thermodynamical equilibrium. Therefore, some other methods are
proposed such as [20] for near continuum flows. In this paper, we followed that method in [4] to adopt the Boltzmann-BGK
equation as the kinetic model instead of DSMC to reduce the computational cost on the kinetic region. The Euler equations
are used as the continuum model currently and it can be smoothly extended to Navier–Stokes equations. With the buffer
. All rights reserved.
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zone method originated in [5,6] and used in [4], the coupling of the continuum model and the kinetic model can be imple-
mented quite smoothly without the interface condition, which is often a quite delicate issue.

Using the moving buffer zone method proposed in [4], our whole computational domain is divided into three parts. At
every time step, the kinetic region, where hydrodynamics could possibly break down and Boltzmann-BGK equation would
need to be solved, is identified at first. This is done based on the distance from the current microscopic state to equilibrium in
a certain metric space if microscopic data are available, and if not, the continuum breakdown parameter. The buffer zone is
then given as a band with a prescribed width surrounding the kinetic region. The remaining part of the domain is taken as
the hydrodynamic region. Both microscopic and macroscopic variables are solved in the buffer zone and the solution is the
combination of both ingredients, whose proportions are determined by a cut-off function. It has been pointed out in [4] that
when a fast kinetic Euler solver, such as the Perthame scheme, is used in the pure hydrodynamic region, the hydrodynamic
part of the solution in the buffer zone is better to be solved by a full kinetic scheme in order to avoid oscillations. Meanwhile,
the incompatibility of schemes in the buffer zone and hydrodynamic region makes it nontrivial to keep the whole scheme
conservative. The loss of the conservation could introduce an observable error in the numerical solution. In our implemen-
tation, the flux for the hydrodynamic part is combined with the kinetic flux and the flux of the Perthame scheme. Their ratio
gradually varies according to the continuously discretized cut-off function. With this new flux, the fast scheme on the pure
fluid region is turned to be applicable [4]. Both conservation and saving of computational cost can then be achieved.

In this paper, the domain used to discretize the velocity is a disc with polar coordinates instead of the commonly used
square domain (cf. [11,21,6]). The disc domain makes it convenient to implement the conservative specularly reflective
boundary condition for 2-dimensional problems. It is the first time that the piecewise constant discrete distribution is up-
graded to a piecewise biquadratic and globally continuous version in the polar coordinates. The piecewise biquadratic dis-
crete Maxwellian is numerically verified to have improved accuracy. To make the globally continuous approximation of the
Maxwellian feasible, we explicitly express the constraints of the microscopic state in the equations of its nodal values, and
find that these constraints have the same form as those in the piecewise constant case. Thus the results in [12] can be reused.
With such an approximation, only the numerical integrations in our scheme need to be revised. Mimicing the method used
in the Perthame scheme, the distribution function is substituted by an alternative version [13] to get an explicit formula.

As to the time discretization, we consider both a time-split scheme and an unsplit scheme used in [6,5]. The time-split
scheme is then applied on the h-adaptive meshes without any additional difficulties, while the unsplit scheme need to be
modified delicately and we do not use it in our numerical tests. Using the h-adaptive method, the number of mesh cells
in the hydrodynamic region is reduced while the kinetic region is resolved with a finer mesh. Currently, the indicators used
in the mesh adaptation are heuristic. It is a balance of the gradient of the macroscopic variables and the difference to the
equilibrium. In the pure fluid region, the cells with fast varying macroscopic variables are refined. This adaptation strategy
is demonstrated to be effective in our numerical examples.

The layout of this paper is as follows: in Section 2, we introduce the basic framework of the coupled method, and in Sec-
tion 3, the details of the discretization on a static mesh are presented. In Section 4, the indicators used in the mesh adapta-
tion are discussed and the changes in the discretized scheme on h-adaptive meshes are described. We present in Section 5
three numerical examples to validate the coupled scheme on h-adaptive meshes. Some concluding remarks will be given in
the final section.

2. The hybrid method of kinetic/continuum coupling models

2.1. Boltzmann-BGK equation

Consider the nondimensionalized form of Boltzmann-BGK equation (cf. [21])
@t f þ v � rxf ¼ mðMf � f Þ;
f ðx;v; 0Þ ¼ f0ðx;vÞ;

�
ð1Þ
where x; v 2 RD, and D is the dimension of the space. The distribution f is a non-negative function of position x, velocity v
and time t, and m is the collision frequency. Mf is the Maxwell distribution, or Maxwellian, which cancels the collision term
Qðf ; f Þ of the Boltzmann equation. Mf can be written as
Mf ¼ Mf ½n;u; T�ðvÞ ¼
n

ðpTÞD=2 exp
�ju� vj2

T

 !
; ð2Þ
where n is the number of particles or density, which are the same as in the dimensionless form, and u and T are the mean
velocity and macroscopic temperature respectively. These macroscopic quantities are related to f through the following
equations
n ¼
Z

RD
f dv ; nu ¼

Z
RD

vf dv ;

E ¼
Z

RD

1
2
jvj2f dv ¼ 1

2
njuj2 þ D

2
nT

� �
:

ð3Þ
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As in [21], m is calculated by
m ¼ 8nT1�v

5
ffiffiffiffi
p
p

Kn
: ð4Þ
Here Kn ¼ k1=L is the Knudsen number, where k1 is the mean free path of free stream, and L is some characteristic length. v
is a constant for a given gas.

2.2. Decomposition of the Boltzmann-BGK equation

The coupling method in 1-dimensional case has been introduced in [4,6]. We will redescribe it here for the 2-dimensional
case. The key point of our method is that the Boltzmann-BGK equation is not solved on the whole computational domain, but
only on some ‘‘hydrodynamics breakdown” areas where the classic Euler or Navier–Stokes equations likely to produce incor-
rect solutions.

Let X be the computational domain. Let us assume that some sub-domains of X, denoted by X1;X2; . . . ;Xm, are considered
as kinetic zones, i.e., the ‘‘hydrodynamics breakdown” areas. In order to realize a smooth transition between Boltzmann-BGK
equation and Euler equations, a buffer zone Bi with fixed width d is created around each Xi; i ¼ 1;2; . . . ;m. We define a cut-
off function, which is an extension of the cut-off function defined in [4], as follows:
hðx; tÞ ¼
1; for x 2 Xi;

1� 1
d min

i¼1;...;m
distðx;XiÞ; for x 2 Bi;

0; other:

8>><
>>: ð5Þ
Note that each Xi as well as the number of kinetic zones m will change with respect to time. Then the distribution function f
is decomposed into two parts
fL ¼ ð1� hÞf ; f R ¼ hf : ð6Þ
Substitute (6) into (1), we have
@tfL þ ð1� hÞv � rxf ¼ ð1� hÞmðMf � f Þ � f@th; ð7Þ
@tfR þ hv � rxf ¼ hmðMf � f Þ þ f@th; ð8Þ
with initial conditions
fLðx;v ;0Þ ¼ ð1� hðx; 0ÞÞf ðx;v ;0Þ; ð9Þ
fRðx;v; 0Þ ¼ hðx;0Þf ðx;v ;0Þ: ð10Þ
2.3. Boltzmann-BGK/Euler coupling

The decomposition introduced in Section 2.1 implies that outside
Sm

i¼1Xi, hydrodynamic equations indeed make sense for
Mf � f . With the definition of h, we have fL � ð1� hÞMf . Substituting these two relations into (7), the collision term disap-
pears and an equation of Mf is formed:
@t½ð1� hÞMf � þ ð1� hÞv � rxMf ¼ �Mf @th: ð11Þ
Let
uL ¼ u; qL ¼ ðnL;nLuL; ELÞT ¼ ð1� hÞq: ð12Þ
Multiply (11) by m ¼ 1;v ; 1
2 jv j

2
� �T

and integrate both sides with respect to v over R2. By the definition of Mf , we have the
following equations in Eulerian form
@tqL þ ð1� hÞrx �
Z

R2
v �mMf dv � �q@th: ð13Þ
However, in order to shift smoothly from kinetic region to hydrodynamic region, we replace Mf by f in (13) over the buffer
zone, where f is defined as
f ¼ MfL
þ fR; ð14Þ
and MfL is similarly defined as that of Mf , while all macroscopic variables in the definition (2) should be modified by adding a
subscript ‘‘L”. Note that here f and the original distribution function are not identical. With such a definition, the equations to
be solved in non-kinetic regions become
@tqL þ ð1� hÞrx �
Z

R2
v �mf dv ¼ �q@th: ð15Þ
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This formula is actually only an approximate equation if we consider f as the real distribution function. Join (8), (14) and (15)
together, the coupling is completed. The initial conditions are given as
fRðx;v; 0Þ ¼ hðx;0Þf ðx;v ;0Þ; qLðx;0Þ ¼
Z

R2
mðvÞf ðx;v ; 0Þdv : ð16Þ
3. Numerical method on a static mesh

In this section, we present a practicable algorithm with the capacity to determine kinetic zones automatically, and then
give a conservative numerical scheme compatible with the Boltzmann-BGK/Euler coupling equations on a static mesh.

3.1. Velocity discretization

Suppose R 2 R2 to be a bounded computational domain for velocity v . Given a macroscopic state of fluid q, if the formula
(2) is used to calculate Maxwellian at each discrete velocity, then (3) cannot hold for this discrete Maxwellian. Thus the con-
servation of the whole scheme will be lost. In order to overcome this difficulty, the discrete velocity model proposed in [11]
is employed.

It is well known that the H-Theorem (cf. [2]) implies that the Maxwell distribution Mf minimizes the entropy functional
Hðf Þ ¼
Z

RD
f log f dv ; ð17Þ
where f satisfies (3). Mimicing this property, the discrete Maxwellian can be defined consequently.
Divide the computational domain R into N elements. The kth element has a volume of Dvk with its barycenter at

vk; k ¼ 1;2; . . . ;N. Assume that the spatial position x and the time t are both fixed, and then the distribution function f will
be only related with v . The piecewise constant discrete Maxwellian is defined by
EK ¼ arg min
g2RN

XN

k¼1

Dvkgk log gk : g P 0; q ¼
XN

k¼1

mkgkDvk

( )
; ð18Þ
where
mk ¼ 1;vk;
1
2
jvkj2

� �T

: ð19Þ
It was proved in [11] that if the matrix ðm1;m2; . . . ;mNÞ has full row rank and there is at least one strictly positive vector g
satisfying the conservative constraints in (18), then there exists a unique a 2 RDþ2 such that
Ek ¼ expða �mkÞ; k ¼ 1;2; . . . ;N; ð20Þ
where Ek is the kth component of EK. The convergence of such discretization can be found in [11,12].
It remains to find out the very a that forms Ek. This can be easily done by solving a nonlinear system of a
XN

k¼1

mk expða �mkÞDvk ¼ q; ð21Þ
which will converge in only a few steps of Newton iteration with initial guess as
að0Þ ¼ log
n

ðpTÞD=2

 !
� jvj

2

T
;
2v
T
;�2

T

 !T

: ð22Þ
The specularly reflective boundary condition in 2-dimensional domain, especially on a curvilinear boundary, will appear
in some practical problems. This kind of boundary condition is dealt with by ghost cells at the opposite side of the reflecting
wall. If a boundary cell is marked as kinetic, the associated ghost cell should have a symmetric distribution function with
respect to the wall. However, if a rectangle domain in velocity space is used as Fig. 1(a), some grid points could be out of
the domain in the ghost cell. Therefore, a domain which is symmetric respect to all specularly reflective boundaries can make
our implementation more convenient.

However, when applying the h mesh adaptation, as the elements on the curvilinear reflecting wall are refined, the out
normal of these elements are changing. This makes it difficult to construct beforehand a polygonal mesh which satisfies
the symmetric property stated above. To remedy this problem, the computational domain is chosen to be a disc with polar
coordinates and a continuous discrete distribution function is used so that the function value on any point can be easily ac-
cessed through a simple interpolation. On such a mesh, a new method is needed to approximate the discrete Maxwellian.

Let R be a disc in 2-dimensional space with its center at origin and radius vmax. In polar coordinates ðr;uÞ, it can be
expressed by



Fig. 1. Meshes of velocity on the specularly reflective boundary. The solid ones indicate the boundary cells, while the dashed ones indicate the ghost cells.
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R ¼ fðr;uÞj0 6 r 6 vmax; 0 6 u < 2pg: ð23Þ
The mesh on R is a uniform one such that all the grid points form a point set
V ¼ fðiDr; jDuÞji ¼ 1; . . . ;M; j ¼ 1; . . . ;Ng;[fð0; 0Þg; ð24Þ
where
MDr ¼ vmax; NDu ¼ 2p: ð25Þ
Let both M and N be even. A piecewise biquadratic approximation can then be applied. The following numerical integra-
tion formula is accurate for biquadratic functions over a rectangle ½r0; r1� � ½u0;u1�:
Z r1

r0
dr
Z u1

u0
rf ðr;uÞdu ¼ ðr

1 � r0Þðu1 �u0Þ
36

X2

i¼0

X2

j¼0

cicjri=2f ðri=2;ujÞ; ð26Þ
where c0 ¼ c2 ¼ 1; c1 ¼ 4 and r1=2 ¼ ðr0 þ r1Þ=2. Let ~f be a continuous function on R, which is biquadratic on every cell
½2ði� 1ÞDr; 2iDr� � ½2ðj� 1ÞDu;2jDu� where i ¼ 1; . . . ;M=2 and j ¼ 1; . . . ;N=2. Then
Z
R

~f ðvÞdv ¼
Z

R
r~f ðr;uÞdr du ¼

XM=2

i¼1

XN=2

j¼1

Z 2iDr

2ði�1ÞDr
dr
Z 2jDu

2ðj�1ÞDu
r~f ðr;uÞdu: ð27Þ
According to (26), each term in the summation at the right hand side of (27) can be expressed by a linear combination of
function values on nine grid points, so the whole integral turns out to be a combination of values on all grid points. Now
the technique used in the piecewise constant approximation is still valid. According to our experience, this type of approx-
imation is more robust in practical computation. On the same mesh, when Newton iteration fails for piecewise constant
approximation due to the inadequate fineness of velocity mesh or too small a computational domain, piecewise biquadratic
approximation may still work and provides result is with enough accuracy.

On this uniform mesh in polar coordinates, though not implemented yet, a conservative scheme for specularly reflective
boundary condition on curvilinear edge is feasible, that is, the total mass will not change after reflection. It is shown in
Fig. 1(b) that grid points of two meshes may not coincide, so in order to construct a conservative scheme, the continuous
expression of distribution is used. The flux is also approximated based on a biquadratic form, but one important thing is
to use the expression on the boundary cell while v � n > 0, and to use the expression on the ghost cell while v � n < 0, just
like the upwind scheme. Now, after convection, the result distribution of the boundary cell is not biquadratic, but preserves
conservation. Then, by applying a conservative projection, the result distribution on the boundary cell restores its biqua-
dratic form, so the whole scheme keeps conservation.

In our implementation, for simplicity, we directly interpolates the distribution on the ghost cell to the grid of boundary
cell. Therefore the conservation is not precisely accurate. Even so, the loss or gain of mass is small enough so that no signif-
icant error can be found in the numerical results.

It is shown in Section 5 that the biquadratic approximation has a high accuracy order and this method is used in our
numerical experiments. For conciseness, the notations of the piecewise constant type are used when describing our
algorithm below.
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3.2. Kinetic schemes

We used an unstructured triangular mesh for space discretization, since this is more applicable to domains with complex
shapes. Denoting the spatial domain as X, we revise the finite volume schemes proposed in [4] to 2-dimensional case.

3.2.1. An unsplit method
This method was originally investigated in [5] for the coupling between Boltzmann and diffusion equations. And later in

[6], it was then generalized to a large class of similar problems. The kinetic part of the scheme reads
f nþ1
k;i;R ¼ f n

k;i;R þ f n
k;iðh

nþ1
i � hn

i Þ � Dt
1
Vi

X
j

hnþ1
ij lij/i;jðf n

k;ij
; f n

k;iÞ þ mn
i ðEk½qn� � f n

k;iÞ
" #

; ð28Þ
where lij is the length of the jth boundary of element i, and ij is the index of the jth neighbour of element i. hi and hij are the
mean values of the cut-off function on the ith element and on its jth boundary, respectively. Note that hnþ1 is obtained before
applying the scheme, which will be shown later, so the scheme is explicit. The numerical flux is defined by
/i;jðf L
k ; f

R
k Þ ¼

1
2
ðvk � ni;jÞðf L

k þ f R
k Þ � jvk � ni;jjðf L

k � f R
k Þ

� 	
; ð29Þ
where ni;j is the unit out normal on the jth boundary of element i.

3.2.2. A time-split method
The time-split scheme is slightly modified from the one in [4]. In [4], the time-split method was employed to simplify the

construction of new kinetic zones. The modification preserves this advantage while skips the calculation of discrete Max-
wellian on the middle time step, and it has hardly any effects on the numerical results. Moreover, it is explained in the next
section that this scheme is more compatible with the h-mesh adaptation. It reads
f nþ1=2
k;i;R ¼ hnþ1

i f n
k;i; ð30Þ

f nþ1
k;i;R ¼ f nþ1=2

k;i;R � Dt
1
Vi

X
j

hnþ1
ij lij/i;jðf n

k;ij
; f n

k;iÞ � mn
i ðEk½qn� � f n

k;iÞ
" #

: ð31Þ
The first step is as a redistribution of the kinetic and hydrodynamic parts, but the total distribution of particles in velocity
remains. The second step performs the convection and the collision. Details can be found in [4].

3.3. Hydrodynamic schemes

Hydrodynamic part of distribution exists in both buffer zone and pure hydrodynamic region, while different schemes are
used therein.

In the buffer zone, we imitate the schemes in the previous two subsections and get the two schemes as following

� Unsplit scheme
qnþ1
i;L ¼ qn

i;L � qn
i ðh

nþ1
i � hn

i Þ �
Dt
Vi

XN

k¼1

mkDvk

X
j

ð1� hnþ1
ij Þlij/i;jðf n

k;ij
; f n

k;iÞ: ð32Þ
� Time-split scheme
q
nþ1=2
i;L ¼ ð1� hnþ1

i Þqn
i ; ð33Þ

qnþ1
i;L ¼ q

nþ1=2
i;L � Dt

Vi

XN

k¼1

mkDvk

X
j

ð1� hnþ1
ij Þlij/i;jðf n

k;ij
; f n

k;iÞ: ð34Þ
These two methods turn out to be ordinary kinetic schemes for Euler equations, which is denoted by KSðqn
i;L; f

nÞ, and the
computational cost is no less than the schemes in kinetic zones. For efficiency, the Maxwellain Mf is substituted by a simpler
function so that the integral in the numerical scheme can be obtained analytically. The solver in one dimensional case has
been proposed in [4] as the Perthame scheme, and now we extend it to the 2-dimensional case. Referring to [13], an alter-
native form of equilibrium function is given as
MðvÞ ¼
~a; jv � uj 6 ~b;

0; others:

(
ð35Þ
Here ~a and ~b are chosen such that if we substitute M for f in (3), the equations in (3) still hold. Thus a simple calculation gives
~a ¼ n
2pT

; ~b ¼
ffiffiffiffiffiffi
2T
p

: ð36Þ



Table 1
Accurate integral formulas.

Case 1: b P ~b Case 2: jbj < ~b

I1 p~a~b2b ~a½ð2~b2 þ b2Þc=3þ ~b2bh�
I
 p~a~b2ðb2 þ ~b2=4Þ ~a bcð13~b2 þ 2b2Þ=12þ ~b2ðb2 þ ~b2=4Þh

h i
I2 n2aI1 + n1I
 n2aI1 þ n1I


I3 �n1aI1 + n2I
 �n1aI1 þ n2I


I4 I1ða2 þ b2 þ ~b2Þ=2 I

 þ ~a~b2bð~b2 þ a2 þ b2Þh=2

Note 1: I

 ¼ ~acð6~b4 þ 23~b2b2 þ b4 þ 5a2b2 þ 10a2~b2Þ=30.
Note 2: If b 6 �~b, all Ij ’s are zero.
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In the pure hydrodynamic region where h ¼ 0, we have
qnþ1
i ¼ qn

i �
Dt
Vi

X
j

lij

Z
R2

m/i;jðMn
ij
;Mn

i Þdv ¼ qn
i �

Dt
Vi

X
j

lij

Z
R2þ

i;j

mðv � ni;jÞMn
i dv þ

Z
R2�

i;j

mðv � ni;jÞMn
ij

dv
" #

; ð37Þ
where R2	
i;j ¼ fv jv � ni;j?0g.

Now we give the formulae to calculate
Z
v�n>0

mðv � nÞMðvÞdv ; n is an arbitrary unit vector; ð38Þ
which are involved in the two integrals in Eq. (37). Suppose u ¼ ðu1;u2ÞT and n ¼ ðn1;n2ÞT . Let
a ¼ u1n2 � u2n1; b ¼ u1n1 þ u2n2;

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � b2

q
; h ¼ p=2þ arcsinðb=~bÞ;

ð39Þ
and Ij be the jth component of integral (38). The values of Ij’s under different conditions are all listed in Table 1. With these
analytical expressions, calculation for (37) runs significantly faster than the kinetic schemes.

With two different schemes used for the hydrodynamic part, the incompatiblity of different schemes could destroy the
conservation of moments on the transitional cells if in two neighbouring elements, different schemes are used for the hydro-
dynamic part. As an alternative, we can force every boundary line betweens cells in the mesh to use the same type of flux in
its two neighbouring elements, such that the conservation can be guaranteed. However, numerical oscillations could appear
on the interface between buffer zone and pure hydrodynamic region. This phenomenon was originally mentioned in [4] and
also appears in our numerical experiments. We propose the following scheme in the buffer zone to solve this problem.
qnþ1
i;L ¼ KSðqn

i;L; h
nþ1f nÞ � Dt

Vi

X
j

ð1� hnþ1
ij Þ

2lij �
Z

R2þ
i;j

mðv � ni;jÞMn
i dv þ

Z
R2�

i;j

mðv � ni;jÞMn
ij

dv
" #

; ð40Þ
where KS is the kinetic Euler solver (32) or (33) and (34). Here both schemes are used in the buffer zone and the proportion of
the kinetic Euler solver gradually changes from 1 to 0 while transiting from pure kinetic to pure hydrodynamic region. That is
to say, the buffer zone is reused as a transitional buffer between two hydrodynamic schemes. Now the whole scheme be-
comes conservative, that is, there is no loss or gain of mass, momentum and energy, thanks to our continuous construction
of the discrete cut-off function h (detailed explanation can be found in the last two paragraphs of the next subsection). Take
the time-split scheme as an example. It gives
X

i

qnþ1
i V i ¼

X
i

qnþ1
i;R Vi þ

X
i

qnþ1
i;L Vi ¼

X
i

X
k

mkf nþ1
k;i;R DvkVi þ

X
i

qnþ1
i;L Vi

¼
X

i

X
k

mk hnþ1
i f n

k;iV i � Dt
X

j

hnþ1
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�
X
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ij Þ

2lij

Z
R2þ

i;j
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i dv þ

Z
R2�

i;j

mðv � ni;jÞMn
ij
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: ð41Þ
Using
 X
k

mkEk½qn
i �Dvk ¼

X
k

mkf n
k;iDvk ¼ qn

i ; ð42Þ
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Eq. (41) becomes
X
i

qnþ1
i V i ¼

X
i

qn
i Vi � Dt

X
i

X
j

lijðF1
i;j þ F2

i;j þ F3
i;jÞ; ð43Þ
where
F1
i;j ¼ hnþ1

ij

X
k

mk/i;jðf n
k;ij
; f n

k;iÞDvk; ð44Þ

F2
i;j ¼ ð1� hnþ1

ij Þh
nþ1
ij

X
k

/i;jðf n
k;ij
; f n

k;iÞDvk; ð45Þ

F3
i;j ¼ ð1� hnþ1

ij Þ
2
Z

R2þ
i;j

mðv � ni;jÞMn
i dv þ

Z
R2�

i;j

mðv � ni;jÞMn
ij

dv
" #

: ð46Þ
Let ji 2 f1;2;3g satisfies ni;j ¼ �nij ;ji . Then the jith neighbour of the ijth element must be the ith element. Since h is continuous
and n is the out unit normal vector, it is obvious that
hnþ1
ij ¼ hnþ1

ij ji
; R2	

i;j ¼ R2�
ij ;ji
: ð47Þ
Thus,
Fs
i;j ¼ �Fs

ij ;ji
; s ¼ 1;2;3: ð48Þ
This equality indicates that the whole scheme is conservative. Due to the smooth transition in the buffer zone, numerical
oscillations disappear.

3.4. Moving kinetic zones

For the method on a static mesh, it remains to update the cut-off function h at every time step. This is done by identifying
the kinetic zones and then constructing h its definition (5).

In the kinetic regions, the distribution of particles is known so the difference between the discrete distribution and the
discrete Maxwellian can be obtained directly. The pointwise indicator suggested in [4] is
bi ¼ min
k¼1;...;N

fk;i=Ek½qi� ð49Þ
on the ith element. If bi is not close enough to 1, the ith element is identified as kinetic. We also consider another similar
indicator, which is the L1 norm of the difference between the discrete distribution and the discrete Maxwellian
~bM;i ¼ 1� 1
n

XN

k¼1

jfk;i � Ek½qi�jDvk: ð50Þ
In our numerical experiments detailed in Section 5, it is observed that these two indicators have different behaviors. In high
density region where the major non-equilibrium area lies in shocks, bi can effectively detect the shock while ~bM;i gives a rel-
atively poorer detection. However, if non-equilibrium is caused by rarefaction of gas, the performance of ~bM;i can be better
since the quantity of discrete distribution can be very small at some velocity nodes far from the mean velocity.

It is much more difficult to make decisions out of the kinetic region where the microscopic data are unavailable. In such
cells, we employ the continuum breakdown parameter proposed in [17]. This parameter has been widely used in various
approaches to hybrid particle-continuum, e.g. [15,14]. The parameter reads
Knmax ¼maxfKnn;KnT ;KnVg; ð51Þ
where
KnQ ¼ k
jrQ j

Q
; Q 2 fn; T;Vg; ð52Þ
and k is the mean free path. The elements where Knmax are bigger than a previously given threshold are shifted into kinetic
region. The threshold depends on the problem under consideration. We note that there are other indicators for kinetic iden-
tification, for example the one proposed in [19]. It defines a thermal non-equilibrium indicator as
PTne ¼
TTr � TR

TTr










 ð53Þ
where TTr and TR are the translational and rotational temperature, respectively. If PTne is large enough, the hydrodynamic
equations could probably break down.

With the criteria given above, each cell in the triangulation can be identified as either kinetic or not kinetic. The cut-off
function h is set to be 1 on all kinetic cells. By definition (5), the value of h over all the domain is then given. As explained in
[6], although the hybrid model with an interface has been implemented through a half-flux algorithm in [3,16], the buffer
zone is indeed useful since it is not clear yet what the limit of the solution is as the width of the buffer zone tends to zero.



Fig. 2. The case that an element which is not marked may also have hi ¼ 1.
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Since h is a distance function to the kinetic region, it is more natural to approximate it by a piecewise linear and contin-
uous function on the spatial mesh than by a piecewise constant one. The discrete cut-off function is then given by the dis-
tance from all mesh points to the kinetic zone. Instead of carrying out an accurate and complicated calculation of the
distance from all grid points to the kinetic region, we extend the kinetic zone layer-by-layer by making use of the connec-
tions of the grid points. While extending the area, the distances from the grid points to the kinetic region are consequently
obtained. As the band is only several times as wide as the minimal cell, the procedure will stop after a few rounds of exten-
sion. Thus the discrete cut-off function can be obtained cheaply.

In the finite volume scheme, the mean value of h on the ith element, denoted as hi, is used. Note that the element with
hi ¼ 1 may not be an element marked as ‘‘kinetic”. For example, in Fig. 2, gray elements are marked as ‘‘kinetic” while the
only white area is not. However, since all the three vertices of the white element belong to other marked elements, the val-
ues on these vertices will be all set to 1. Thus on the white element, which is not marked, hi is forced to be 1 owing to a
piecewise linear form of h. Such case happens very occasionally and has no essential effect on the efficiency of the algorithm.

4. Mesh adaptation

We expect the coupled method’s use of the hydrodynamic solver on most of the computational domain to achieve high
efficiency. The sizes of mesh cells in the kinetic region and the hydrodynamic region should surely be different. Since the
kinetic region, where physically incorrect phenomenon is most likely to appear, is the main source of numerical errors, such
a region needs be further refined. Meanwhile, the solution structures in the hydrodynamic region are relatively simple. 